
ring,

pan

PHYSICAL REVIEW E JULY 1998VOLUME 58, NUMBER 1
Generalization ability of a perceptron with nonmonotonic transfer function
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We investigate the generalization ability of a perceptron with nonmonotonic transfer function of a reversed-
wedge type in on-line mode. This network is identical to a parity machine, a multilayer network. We consider
several learning algorithms. By the perceptron algorithm the generalization error is shown to decrease by the
a21/3-law similarly to the case of a simple perceptron in a restricted range of the parametera characterizing the
nonmonotonic transfer function. For other values ofa, the perceptron algorithm leads to the state where the
weight vector of the student is just opposite to that of the teacher. The Hebbian learning algorithm has a similar
property; it works only in a limited range of the parameter. The conventional AdaTron algorithm does not give
a vanishing generalization error for any values ofa. We thus introduce a modified AdaTron algorithm that
yields a good performance for all values ofa. We also investigate the effects of optimization of the learning
rate as well as of the learning algorithm. Both methods give excellent learning curves proportional toa21. The
latter optimization is related to the Bayes statistics and is shown to yield useful hints to extract maximum
amount of information necessary to accelerate learning processes.@S1063-651X~98!01007-1#

PACS number~s!: 87.10.1e
m

n

n
cs
n
c
o
o

e
e
s

e
in
on
pa
ge
in

a
m
he

ta

n
b

c
s
is

hi

e
ct

t
on
nd
is
e-

rge
in-

st or-
e
ce-
and
by

we
ua-
ral
her
the
m-
for
ing
he

ec.
d
-

he
of

ral
I. INTRODUCTION

In artificial neural networks, the issue of learning fro
examples has been one of the most attractive problems@1–
4#. Traditionally emphasis has been put on the off-line~or
batch! learning. In the off-line learning scenario, the stude
sees a set of examples~called a training set! repeatedly until
equilibrium is reached. This learning scenario can be a
lyzed in the framework of equilibrium statistical mechani
based on the energy cost function, which means stude
total error for a training set or on other types of cost fun
tions @5–7#. However, recently, several important features
learning from examples were derived from the paradigm
on-line learning. In the on-line learning scenario, the stud
sees each example only once and throws it out, and he n
sees it again. In other words, at each learning stage, the
dent receives a randomly drawn example and is not abl
memorize it. The most recent example is used for modify
the student weight vector only by a small amount. The
line learning has an advantage over the off-line counter
in that it explicitly carries information about the current sta
of achievement of the student as a function of the train
time ~which is proportional to the number of examples!.

Over the past several years, many interesting results h
been reported in relation to on-line learning. Among the
the generalization ability of multilayer networks is one of t
central problems@8–10#. Multilayer neural networks are
much more powerful machines for information represen
tion than the simple perceptron.

Recently, the properties of neural networks with a no
monotonic transfer function have also been investigated
several authors@11–16#. A perceptron with a nonmonotoni
transfer function has the same input-output relations a
multilayer neural network called the parity machine. Th
parity machine has one hidden layer composed of three
PRE 581063-651X/98/58~1!/849~12!/$15.00
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den units~theK53 parity machine!. The output of each unit
is represented as sgn(2u), sgn(2a2u), and sgn(a2u),
whereu[AN(J•x)/uJu. HereJ is theN-dimensional synap-
tic connection vector andx denotes the input signal. Then th
final output of this machine is given as the produ
sgn(2u)sgn(2a2u)sgn(a2u). We regard this final outpu
of the K53 parity machine as the output of a perceptr
with non monotonic transfer function. Recently, Engel a
Reimers@17# investigated the generalization ability of th
nonmonotonic perceptron following the off-line learning sc
nario. Their results are summarized as follows; For 0,a
,`, there exists a poor generalization phase with a la
generalization error. As the number of presented patterns
creases, a good generalization phase appears after a fir
der phase transition at somea. No studies have been mad
about the present system following the on-line learning s
nario. In this paper we study the on-line learning process
the generalization ability of this nonmonotonic perceptron
various learning algorithms.

This paper is organized as follows. In the next section
introduce our model system and derive the dynamical eq
tions with respect to two order parameters for a gene
learning algorithm. One is the overlap between the teac
and student weight vectors, and the other is the length of
student weight vector. In Sec. III, we investigate the dyna
ics of on-line learning in the nonmonotonic perceptron
the conventional perceptron learning and Hebbian lean
algorithms. We also investigate the asymptotic form of t
differential equations in both small and largea limits and get
the asymptotic behavior of the generalization error. In S
IV we investigate the AdaTron learning algorithm an
modify the conventional AdaTron algorithm. In this modifi
cation procedure, we improve the weight function of t
AdaTron learning so as to adopt it according to the range
a. In Sec. V, we optimize the learning rate and the gene
849 © 1998 The American Physical Society
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weight function appearing in the on-line dynamics. As t
weight function contains the variables unknown for the s
dent, we average over these variables over distribution fu
tion unknown using the Bayes formula. Section VI conta
concluding remarks.

II. THE MODEL SYSTEM AND DYNAMICAL EQUATIONS

We investigate the generalization ability of the nonmon
tonic perceptrons for various learning algorithms. The s
dent and teacher perceptron are characterized by their we
vectors, namely,JPRN and BPRN with uBu51, respec-
tively. For a binary input signalxP$21,11%N, the output is
calculated by the nonmonotonic transfer function as follow

Ta~v !5sgn@v~a2v !~a1v !# ~1!

for the teacher and

Sa~u!5sgn@u~a2u!~a1u!# ~2!

for the student, where we define the local fields of the teac
and student asv [AN(B•x)/uBu and u[AN(J•x)/uJu, re-
spectively. The on-line learning dynamics is defined by
following general rule for the change of the student vec
under presentation of themth example:

Jm115Jm1 f „Ta~v !,u…x. ~3!

Well-known examples are the perceptron learning,f 5
2Sa(u)Q„2Ta(v)Sa(u)…, the Hebbian learning,f 5Ta(v),
and the AdaTron learning,f 52ulQ„2Ta(v)Sa(u)….

We rewrite the update rule, Eq.~3!, of J as a set of dif-
ferential equations introducing the dynamical order para
eter describing the overlap between the teacher and stu
weight vectorsRm[(B•Jm)/uJmu and another order param
eter describing the norm of the student weight vectorl m

[uJmu/AN. By taking the overlap of both sides of Eq.~3!
ro
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with B and by squaring both sides of the same equation,
obtain the dynamical equations in the limit of largem andN
keepinga[m/N finite as

dl

da
5

1

2l
^^ f 2

„Ta~v !,u…12 f „Ta~v !,u…ul&& ~4!

and

dR

da
5

1

l 2 K K 2
R

2
f 2
„Ta~v !,u…2~Ru2v ! f „Ta~v !,u…l L L .

~5!

Here ^^•••&& denotes the average over the randomness
inputs

^^•••&&[E E dudv~••• !PR~u,v ! ~6!

with

PR~u,v ![
1

2pA12R2
expS 2

~u21v222Ruv !

2~12R2!
D . ~7!

As we are interested in the typical behavior under our tra
ing algorithm, we have averaged both sides of Eqs.~4! and
~5! over all possible instances of examples. The Gauss
distribution~7! has been derived from the central limit the
rem.

The generalization error, which is the probability of di
agreement between the teacher and the trained studen
represented aseg5^^Q„2Ta(v)Sa(u)…&&. After simple cal-
culations, we obtain the generalization error as
E~R![eg52E
a

`

DvHS a1Rv

A12R2D 12E
a

`

DvHS 2~a2Rv !

A12R2 D 12E
0

a

DvHS Rv

A12R2D 22E
a

`

DvHS Rv

A12R2D
22E

0

a

DvHS a1Rv

A12R2D 12E
0

a

DvHS a2Rv

A12R2D , ~8!
b-
r

where we have set H(x)5*x
`Dt with Dt

[dt exp(2t2/2)/A2p.
We would like to emphasize that the generalization er

obtained in Eq.~8! is independent of the specific learnin
algorithm. In Fig. 1, we plotE(R)5eg for several values of
a. This figure tells us that the student can acquire a per
generalization ability if he is trained so thatR converges to 1
for all values ofa. We have confirmed also analytically th
E(R) is a monotonically decreasing function ofR for any
value ofa.
r

ct

III. HEBBIAN AND PERCEPTRON LEARNING
ALGORITHMS

A. Hebbian learning

We first investigate the performance of the on-line He
bian learningf 5Ta(v). We get the differential equations fo
l andR as follows:

dl

da
5F1

2
1

2R

A2p
~122D!l G Y l , ~9!
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dR

da
5F2

R

2

2

A2p
~122D!~12R2!l G Y l 2. ~10!

To determine whether or notR increases witha according to
a, we approximate the differential equation forR aroundR
50 as

dR

da
5

2

A2p
~122D!

1

l 2
. ~11!

Therefore we useR512« for a.ac[A2ln2 and R5«
21 for a,ac . Whena.ac , we obtain

eg5
1

A2p

112D

122D

1

Aa
~12!

and

l 5A2

p
~122D!a. ~13!

On the other hand, fora,ac we obtain

eg511
1

A2p

112D

122D

1

Aa
~14!

and

l 52A2

p
~122D!a. ~15!

We see that the Hebbian learning algorithms lead to the s
R521 for a,ac .

FIG. 1. Generalization error as a function of the overlapR for
several values ofa. The student should be trained so that the ov
lap goes to 1.
te

B. Perceptron learning

We next investigate the on-line perceptron learningf
52Sa(u)Q„2Ta(v)Sa(u)… by solving the next differential
equations numerically;

dl

da
5@ 1

2 E~R!2F~R!l #/ l , ~16!

dR

da
5@2 1

2 E~R!R1„F~R!R2G~R!…l #/ l 2, ~17!

where F(R)5^^Q„2Ta(v)Sa(u)…Sa(u)u&& and G(R)
5^^Q„2Ta(v)Sa(u)…Sa(u)v&&. Using the distribution~7!
we can rewrite these functions as

F~R!5
~12R!

A2p
~122D! ~18!

and

G~R!52F~R!, ~19!

whereD[exp(2a2/2). In Fig. 2 we plot the change ofR
andl as learning proceeds under various initial conditions
the case ofa5`. We see that the student can reach t
perfect generalization stateR51 for any initial condition.
The R-l flow in the opposite limita50 is shown in Fig. 3.
Apparently, for this case the student reaches the state
the weight vector opposite to the teacher,R521, after an
infinite number of patterns are presented. From Eqs.~1! and
~2!, we should notice that the case ofa50 is essentially
different from the case of a simple perceptron.

Since the two limiting cases,a5` anda50, follow dif-
ferent types of behavior, it is necessary to check what h
pens in the intermediate region. For this purpose, we fi
investigate the asymptotic behavior of the solution of E
~16! and ~17! nearR561 for largea. Using the notation
R512«, «→0, the asymptotic forms ofE(R), F(R),
andG(R) are found to be

-
FIG. 2. Trajectories of theR-l flow for a5`. All R-l flows

converge to the state ofR51 after an infinite number of example
are represented.
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E~R!.
A2«

p
~112D!, ~20!

F~R!.
«

A2p
~122D!, ~21!

G~R!.2
«

A2p
~122D!. ~22!

Substituting these expressions into the differential equat
~16! and ~17!, we obtain

«5F ~112D!

3A2~122D!2G 2/3

a22/3, ~23!

l 5
1

2Ap
S 112D

122D D F3A2~122D!2

~112D!
G1/3

a1/3. ~24!

Therefore, the generalization error is obtained from Eq.~20!
as

eg5~112D!
A2

p F ~112D!

3A2~122D!2G 1/3

a21/3. ~25!

The asymptotic form ofl , Eq. ~24!, shows thatD should
satisfy 2D,1 or a.ac . The assumption ofR512« with
«→0 thus fails ifa,ac . This fact can be verified from Eq
~17! expanded aroundR50 as

dR

da
.

2

A2p
~122D!

1

l 2
. ~26!

For a,ac , R decreases witha. Therefore, we use the
relationR5«21,«→0, instead ofR512« for a,ac . We
then find the asymptotic form of the generalization error

FIG. 3. Trajectories of theR-l flow for a50. All R-l flows
converge to the stateR521. Therefore, the corresponding gene
alization error does not converge to the ideal value of zero for
case.
s

eg511F112D

122D G 1

A2pa
~27!

and l goes to infinity as

l 52
2

A2p
~122D!a. ~28!

These two results, Eqs.~25! and~27!, confirm the difference
in the asymptotic behaviors between the two cases ofa50
anda5`.

We have found that the Hebbian and the conventio
perceptron learning algorithms lead to the stateR521 for
a,ac5A2 ln 2. This antilearning effect may be understo
as follows. If the student perceptron has learned only o
example by the Hebb rule,

J5Ta50~v !x. ~29!

Then the output of the student for the same example is

Sa50~u!52sgn~u!52sgn~J•x!52Ta50~v !. ~30!

This relation indicates the anti-learning effect for thea50
case. Similar analysis holds for the perceptron learning.

C. Generalized perceptron learning

In this section, we introduce a multiplicative factoruuug in
front of the perceptron learning function, f
52uuugQ„2Ta(v)Sa(u)…Sa(u), and investigate how the
generalization ability depends on the parameterg. In particu-
lar, we are interested in whether or not an optimal value og
exists. The learning dynamics is therefore

Jm115Jm2uuugSa~u!Q„2Ta~v !Sa~u!…x. ~31!

The case ofg50 corresponds to the conventional perceptr
learning algorithm. On the other hand, the case ofg51 and
a→` corresponds to the conventional AdaTron learnin
Using the above learning dynamics, we obtain the differ
tial equations with respect tol andR as

dl

da
5

1

l FEG~R!

2
2 lF G~R!G , ~32!

dR

da
5

1

l 2F2
R

2
EG~R!1@FG~R!R2GG~R!# l G , ~33!

whereEG(R), FG(R), andGG(R) are represented as

EG~R![^^u2gQ„2Ta~v !Sa~u!…&&, ~34!

FG~R![^^uuug11Q„2Ta~v !Sa~u!…Sa~u!&& ~35!

and

GG~R![^^uuugQ„2Ta~v !Sa~u!…Sa~u!v&&. ~36!

Let us first investigate the behavior of theR-l flow near
R50. WhenR is very small, the right-hand side of Eq.~33!
is found to be ag-dependent constant:

is
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dR

da
5

21/2 ~g21!

p l
GS g

2
1

1

2D ~122D!, ~37!

whereG(x) is the gamma function. As the right hand side
Eq. ~37! is positive for anyg as long asa satisfiesa.ac , R
increases aroundR50 only for this range ofa. Thus the
generalized perceptron learning algorithm succeeds in re
ing the desired stateR51, not the opposite oneR521,
only for a.ac , similarly to the conventional perceptro
learning. Therefore, in this section we restrict our analysis
the case ofa.ac and investigate how the learning curv
changes according to the value ofg.

Using the notation R512«(«→0), we obtain the
asymptotic forms ofEG , FG , andGG as follows:

EG.c1«g11/21c2«1/2, ~38!

FG.c3«11g/22c4«, ~39!

GG.2
c3

g11
«11g/21c4«, ~40!

where c1[22g11/2G(g11)/p(2g11),c2[4a2gD/A2p,
c3[2g13/2G(g/213/2)/p(g12) and c4[2Dag/A2p. We
first investigate the case ofDÞ0 ~finite a), namely,c2 ,c4
Þ0. The differential equations~32! and~33! are rewritten in
terms of« andd51/l as

dd

da
52

d3

2
@c1«g11/21c2«1/2#1d2@c3«11g/22c4«#,

~41!

d«

da
5

d2

2
@c1«g11/21c2«1/2#2dF S 21g

11g D c3«11g/222c4«G .
~42!

As g50 corresponds to the perceptron learning, we n
assumegÞ0. Wheng.0, the terms containingc1 and c3
can be neglected in the leading order. Dividing Eq.~41! by
Eq. ~42!, we obtain

dd

d«
5

d@2c2d«1/2/22c4«#

@c2d«1/2/212c4«#
. ~43!

If we assumed«1/2@« or d«1/2!«, Eq. ~43! is solved asd
5exp(2«), which is in contradiction to the assumptionudu
!1. Thus, we set

d52
4c4

c2
«1/21b«c ~44!

and determineb and c(.1/2). Substituting Eq.~44! into
~43!, we find b58c4 /c2(c2 ,c4.0) andc53/2. The nega-
tive value ofd51/l is not acceptable and we conclude thatR
does not approach 1 wheng.0.

Next we investigate the case ofg,0. Using the same
technique as in the case ofg.0, we obtain

«5F c1~11g!~12g2!

6c3
2~g12!

G 2/3

a22/3, ~45!
f

h-

o

d5
2c3

c1
S g12

g11D «~1/2!~12g!2
4c3

c1~12g2!
«~1/2!~32g!,

~46!

and

eg5
A2

p
~112D!F c1~11g!~12g2!

6c3
2~g12!

G 1/3

a21/3

[
A2

p
~112D! f ~g!a21/3. ~47!

We notice thatg should satisfy21,g,0, because the
prefactor of the leading term ofd, namely, (2c3 /c1)(g
12)/(g11), must be positive. As the prefactor of the ge
eralization error increases monotonically fromg521 to g
50, we obtain a smaller generalization error forg closer to
21.

Next we investigate the case ofa→`, namely, c2 ,c4
50. We first assumel→ l 0 in the limit of a→`. In this
solution,dl/da50 should be satisfied asymptotically. The
from Eq. ~41!, the two terms«g11/2 and «11g/2 should be
equal to each other, namely,«g11/25«11g/2, which leads to
g51. The learning dynamics~31! with a→` and g51 is
nothing but the AdaTron learning, which has already be
investigated in detail@19#. The result for the generalizatio
error is

eg5
3

2a
~48!

if we choosel 0 as l 051/2, and

eg5
4

3a
~49!

if we optimize l 0 to minimize the generalization error.
We next assumel→` as a→`. It is straightforward to

see that« has the same asymptotic form as in the case
DÞ0 andg,0. Thus we have

eg5
A2

p
f 2~g!a21/3, ~50!

where f 2(g) is defined as

f 2~g!5Fp~11g!~12g2!G~g11!

6~25/2!G2~g/211/2!
G 1/3

~51!

andg can take any value within21,g,0.
From the above analysis, we conclude that the student

get the generalization abilitya21 if and only if a→` and
g51 ~AdaTron!. For other cases the generalization error b
haves asa21/3, the same functional form as in the case of t
conventional perceptron learning, as long as the student
obtain a vanishing residual error. Therefore the learn
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curve has universality in the sense that it does not depen
the detailed value of the parameterg.

IV. ADATRON LEARNING ALGORITHM

A. AdaTron learning

In this subsection, we investigate the generalization p
formance of the conventional AdaTron learnin
f 52ulQ„2Ta(v)Sa(u)… @18#. The differential equations
for l andR are given as follows:
x

on

r-

dl

da
52

l

2
EAd~R!, ~52!

dR

da
5

R

2
EAd~R!2GAd~R!, ~53!

where EAd(R)5^^u2Q„2Ta(v)Sa(u)…&& and GAd(R)
5^^uvQ„2Ta(v)Sa(u)…&&. After simple calculations, we
obtain
EAd~R!52S E
a

`

1E
2a

0 DDuu2HS a1Ru

A12R2D 12S E
0

a

1E
2`

2aDDuu2FHS Ru

A12R2D 2HS a1Ru

A12R2D G ~54!

and

GAd~R!5EAd~R!R1
4RaD

A2p
~12R2!FHS a~11R!

A12R2 D 2HS aR

A12R2D 2HS a~12R!

A12R2 D 1
1

2G1
2~12R2!3/2

p

3H DexpF2
a2R2

2~12R2!
G2DexpF2

a2~11R!2

2~12R2!
G2DexpF2

a2~12R!2

2~12R2!
G1expF2

a2

2~12R2!
G2

1

2J . ~55!
n

en-
-

wo

a-
At first, we check the behavior ofR aroundR50. Evaluating
the differential equation~53! aroundR50, we obtain

dR

da
5

4

pS D2
1

2D 2

. ~56!

From this result we find that for any value ofa, the flow of
R increases aroundR50. In Fig. 4, we display the flows in
theR-l plane for several values ofa by numerical integration

FIG. 4. Trajectories for the conventional AdaTron learning. E
cept for the case ofa5` anda50 ~overlapping!, the trajectories
converge to the statel 50.
of Eq. ~53!. This figure indicates that the overlapR increases
monotonically, butR does not reach the stateR51 if a is
finite. This means that the differential equation~53! with
respect toR has a nontrivial fixed pointR5R0(,1) if a
,`, which is the solution of the nonlinear equatio
REAd(R)52GAd(R). Therefore, we conclude that fora5`
anda50, we obtain the generalization error aseg;a21, but
the generalization error converges to a finite value expon
tially for finite a. In Fig. 5, we plot the corresponding gen

-
FIG. 5. Learning curves corresponding to Fig. 4. For the t

cases ofa5` and a50 ~overlapping!, the generalization errors
converge to zero asa21. However, for the other cases, generaliz
tion errors converge to the finite value exponentially.
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eralization error.

B. Modified AdaTron learning

In the previous subsection, we found that the on-line A
Tron learning fails to obtain the zero residual error for fin
a. In this subsection, we modify the AdaTron learning asf
5Q„2Ta(v)Sa(u)…h(u) l with

h~u!55
a2u S u.

a

2D
2u S 2

a

2
,u,

a

2D
2a2u S u,2

a

2D
~57!

and see if the generalization ability of our nonmonoto
system is improved. The motivation for the above cho
comes from the optimization of the learning algorithm to
mentioned in the next section. Details of derivation of E
~57! are found in the Appendix. Then the differential equ
tion with respect toR is obtained as follows:

dR

da
52

R2

2
EMA~R!2RFMA~R!1GMA~R!, ~58!

where EMA(R)5^^h2(u)Q„2Ta(v)Sa(u)…&&, FMA(R)
5^^uh(u)Q„2Ta(v)Sa(u)…&&

and

GMA~R!5^^vh~u!Q„2Ta~v !Sa~u!…&&.

To see the asymptotic behavior of the generalization
ror, we evaluate the leading-order contribution asR ap-
proaches 1, R512«, as

EMA;
2A2

p
~112D!«3/2, ~59!

FMA;2
2A2

p
„112~12a2!D…«3/2, ~60!

GMA;
4A2a2D

p
«3/2. ~61!

Substituting these expressions into the differential equa
~58!, we obtain«1/25A2p/(112D)a21 and the generaliza
tion error as

eg5
A2~112D!

p
«1/25

2

a
. ~62!

We should notice that the above result is independent oa
and the generalization ability of the student is improved
this modification for all finitea.
-

e

.
-

r-

n

y

V. OPTIMIZED LEARNING

A. Optimization of the learning rate

In the present subsection, we improve the conventio
perceptron learning by introducing a time-dependent lea
ing rate@20,19#. We consider the next on-line dynamics:

Jm115Jm2g~a!Q„2Ta~v !Sa~u!…Sa~u!x. ~63!

Using the same technique as in the previous section,
can derive the differential equations with respect tol andR
as follows:

dl

da
5

1

l F1

2
g~a!2E~R!2g~a!F~R!l G , ~64!

dR

da
5

1

l 2F2
R

2
E~R!g~a!21g~a!„F~R!R2G~R!…l G

[L„g~a!…. ~65!

The optimal learning rategopt(a) is determined so as to
maximizeL„g(a)… to accelerate the increase ofR. We then
find

gopt5
@F~R!R2G~R!# l

RE~R!
. ~66!

Substituting this expression into the above differential eq
tions, we obtain

dl

dR
52

@F~R!R2G~R!#@F~R!R1G~R!# l

2R2E~R!
, ~67!

dR

dl
5

@F~R!R2G~R!#2

2RE~R!
. ~68!

We can obtain the asymptotic form of«(512R), l , and
eg with the same technique of analysis as in the previo
section;

«54F2A2~112D!

~122D!2 G 2

a22, ~69!

l 5expF216S 112D

~122D!2D 4

a24G , ~70!

and

eg5
A2

p
~112D!F2A2~112D!

~122D!2 Ga21. ~71!

Therefore, the generalization ability has been improved fr
a21/3 for g51 to a21. The optimal learning rategopt(a)
behaves asymptotically as

gopt5
2A2p

~122D!
a21expF216S 112D

~122D!2D 4

a24G . ~72!
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The factorF(R)R2G(R) of gopt appearing in Eq.~66! is
calculated by substitutingF(R) and G(R) in Eqs. ~18! and
~19! as F(R)R2G(R)5(12R2)(122D)/A2p. Thus, ata
5ac5A2ln2, the optimal learning rate vanishes. Therefo
our formulation does not work ata5ac .

As the optimal learning rategopt changes the sign ata
5ac , from the arguments in Sec. III, we can see why t
optimal learning rate can eliminate the antilearning.

In relation to this phenomenon ata5A2ln2, Van den
Broeck @21,22# recently investigated the same reverse
wedge perceptron, which learns in the unsupervised m
from the distribution:

P~v !52
exp~2v2/2!

A2p
@Q~v2a!1Q~v1a!Q~2v !#

~73!

with v5AN(B•x)/uBu. For small a, he found R(a)
;Aa^v&2 for the optimal on-line learning, wherê•••& de-
notes the average over the distribution~73!. Then he showed
that ata5A2ln2, the distribution~73! leads to^v&50 and
consequentlyR(a)[0. From this result, he concluded th
as long aŝ v&50 holds, any kind of on-line learning nece
sarily fails and the corresponding learning curve has a
teau. It seems that a similar mechanism may lead to a fai
of the optimal learning ata5A2ln2 in our model.

B. Optimization of the weight function using the Bayes formula

In this subsection we try another optimization proced
by Kinouchi and Caticha@23#. We choose the optimal weigh
function f „Ta(v),u… by differentiating the right-hand side o
Eq. ~5! with the aim to accelerate the increase ofR

f * 5
l

R
~v2Ru!. ~74!

It is important to remember thatf * contains some unknown
information for the student, namely, the local field of t
teacherv. Therefore, we should averagef * over a suitable
distribution to erasev from f * . For this purpose, we trans
form the variablesu andv to u andz:

v5zA12R21Ru. ~75!

Then, the connected Gaussian distributionPR(u,v) is rewrit-
ten as

PR~u,v !5
1

2pA12R2
expS 2

u2

2 DexpS 2
z2

2 D . ~76!

We then obtain

^ f * &5
A12R2

R
l ^z& ~77!

where ^•••& stands for the averaging over the variablev.
Substituting this into the differential equation~5!, we find

dR

da
5

~12R2!

2R
^^^z&2&&. ~78!
e

e

-
de

-
re

e

Let us now calculatêz&. For this purpose, we use th
distribution P(zuy,u). This quantity means the posterio
probability of z wheny andu are given, where we have se
y[Ta(v). This conditional probability is rewritten by the
Bayes formula

P~zuy,u!5
P~z!P~yuu,z!

E dz P~z!P~yuu,z!

, ~79!

from which we can calculatêz& as

^z&5E dz zP~zuy,u!5

E dz zP~z!P~yuu,z!

E dz P~z!P~yuu,z!

5

E z Dz P~yuu,z!

E Dz P~yuu,z!

. ~80!

HereP(yuu,z) is given as

P~yuu,z!5yQ~zA12R21Ru!2yQ~zA12R21Ru2a!

1yQ~2zA12R22Ru2a!1
1

2
~12y! ~81!

from the distributiony5Ta(v). Then, the denominator o
Eq. ~79! is calculated as

E Dz P~yuu,z!5yE DzQ~zA12R21Ru!

2yE DzQ~zA12R21Ru2a!

1yE DzQ~2zA12R22Ru2a!

1
1

2
~12y!

[V~yuu!, ~82!

whereV(yuu) means the posterior probability ofy when the
local field of the studentu is given. As we treat the binary
output teacher, we obtain from Eq.~82!

V~61uu!5HS 7
Ru

A12R2D 7HS a2Ru

A12R2D 6HS a1Ru

A12R2D .

~83!

In Figs. 6 (R50.5) and 7, (R50.9), we plotV(11uu) for
the cases ofa54.0, 2.0, 1.0 anda50.5. From these figures
we find that for anyaV(11uu) seems to reach@Ta(u)
11#/2 asR goes to11. Using the same technique, we ca
calculate*Dz zP(yuu,z) and obtain

E Dz zP~yuu,z!5
A12R2

R

]

]u
V~yuu!. ~84!
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Substituting this into the right-hand side ofdR/da, Eq. ~78!,
we obtain

dR

da
5K K 2

~12R2!2

2R3 H ]

]u
ln V~yuu!J 2

1
~12R2!3/2z

R2

]

]u
ln V~yuu!L L , ~85!

FIG. 6. Shapes ofV(11uu) for R50.5.
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where^^•••&& stands for the averaging over the distributio
P(y,u)5* Dz P(yuu,z)P(u)P(z). Performing this average
we finally obtain

dR

da
5

~12R2!

4pR E
2`

`

Du Ja~R,u!, ~86!

where

FIG. 7. Shapes ofV(11uu) for R50.8. We see that for anya
V(11uu) seems to reach@Ta(u)11#/2 asR goes to11.
Ja~R,a![FexpS 2
A1

2

2 D 2expS 2
A2

2

2 D 2expS 2
A3

2

2 D G2F 1

H~2A1!2H~A2!1H~A3!
1

1

H~A1!1H~A2!2H~A3!G ~87!
op-
he

ith
and A1[Ru/A12R2, A2[(a2Ru)/A12R2, A3[(a
1Ru)/A12R2. We plot the generalization error by numer
cally solving Eqs.~16!, ~17!, ~67!, ~68!, and ~86! for the
cases ofa5` in Fig. 8 anda51.0 in Fig. 9. From these
figures, we see that for both cases ofa5` and a,`, the
generalization error calculated by the Bayes formula c
verges more quickly to zero than by the optimal learning r
gopt(a).

Recently, Simmonetti and Caticha@24# introduced the on-
line learning algorithm for the nonoverlapping parity m
chine with general number of nodesK. In their method, the
weight vector of the student in each hidden unit is trained
the method in Ref.@23#. In order to average over the intern
fields of the teacher in the differential equation with resp
to the specific hidden unitk of the student, they need th
conditional probability that depends not only on the inter
field of the unitk but also on the internal field of the othe
units (iÞk). This fact shows that their optimal algorithm
nonlocal. In our problem, the input-output relation of t
machine can be mapped to those of a single layer rever
wedge perceptron. Therefore, it is not necessary for us to
the information about all units and our optimizing procedu
leads to a local algorithm.
-
e

y

t

l

d-
se

In order to investigate the performance of the Bayes
timization, we have calculated the asymptotic form of t
generalization error from Eq.~86! and the result is

«1/25
2

~112D!Ca
~88!

for «512R, where

C[
1

p3/2E2`

`

dt
exp~2t2!

H~ t !
. ~89!

The generalization error is then given by Eq.~20! as

eg5
2A2p

E
2`

`

dt exp~2t2!/H~ t !

1

a
;0.883

1

a
. ~90!

This asymptotic form of the generalization error agrees w
the result of Kinouchi and Caticha@23#. We notice that this
form is independent of the width of the reversed wedgea.

We next mention the physical meaning ofJa(R,u) ap-
pearing in the differential equation~86!. As the rate of in-
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creasedR/da is proportional toJa(R,u), this quantity is
regarded as the distribution of the gain, which determines
increase ofR. Therefore,Ja(R,u) yields important informa-
tion about the strategy to make queries. A query mean
restrict the input signal to the student,u, to some subspace
Kinzel and Ruja´n suggested that if the student learns by
Hebbian learning algorithm from restricted inputs, name
inputs lying on the subspaceu50, the prefactor of the gen
eralization error becomes half@25#. In the present formula-
tion ~86!, query making can be incorporated by inserti
appropriate delta functions in the integrand. The learn
process is clearly accelerated by choosing the peak pos
of Ja(R,u) as the location of these delta functions. In F
10 we plot the distributionJa(R,u) for a52.0 ~top! anda
50.8 ~bottom!. From these figures, we learn that for lar
a(52.0), the most effective example lies on the decis
boundary (u50) at the initial training stage~smallR). How-
ever, as the student learns, two different peaks appear s
metrically and in the final stage of training, the distributio
has three peaks aroundu50 andu56a. On the other hand
for small a(50.8), the most effective examples lie at th
tails (u56`) for the initial stage. In the final stage, th
distribution has two peaks aroundu56a. Therefore it is
desirable to change the location of queries adaptively.

VI. CONCLUSION

We have investigated the generalization abilities of a n
monotonic perceptron, which may also be regarded a
multilayer neural network, a parity machine, in the on-li
mode. We first showed that the conventional perceptron
Hebbian learning algorithms lead to the perfect learningR
51 only whena.ac5A2ln2. The same algorithms yiel
the opposite stateR521 in the other casea,ac . These
algorithms have originally been designed having the sim
perceptron (a5`) in mind, and thus are natural to give th
opposite result for the reversed-output system (a;0). In
contrast, the conventional AdaTron learning algorithm fai

FIG. 8. Learning curves of perceptron, optimized perceptr
and Baysian optimization algorithms fora5`. The Baysian opti-
mization algorithm is the best among the three.
e

to

e
,

g
on
.

n

m-

-
a

d

le

d

to obtain the zero residual error for all finite values ofa. For
the unlearnable situation~where the structures of the teach
and student are different!, Inoue and Nishimori reported tha
the AdaTron learning converges to the largest residual e
among the three algorithms@19#. It is interesting that the
AdaTron learning algorithm is not useful even for the lea
able situation.

In order to overcome this difficulty, we introduced seve
modified versions of the conventional learning rules. We fi
introduced the time-dependent learning rate into the on-
perceptron learning and optimize it. As a result, the gen
alization error converges to zero in proportion toa21 except
at a5A2ln2 where the learning rate becomes identica
zero. We next improved the conventional AdaTron learn

, FIG. 9. Learning curves of perceptron, optimized perceptr
and Baysian optimization algorithms fora51.0. The Baysian opti-
mization algorithm gives the best result among the three.

FIG. 10. Distributions of the gainJa(R,u) for a52.0 ~top! and
a50.8 ~bottom!. The peak positions give the best place to ma
queries.
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by modifying the weight function so that it changes acco
ing to the value of the internal potentialu of the student. By
this modification, the generalization ability of the stude
dramatically improved and the generalization error co
verges to zero with ana-independent form, 2a21.

We also investigated a different type of optimization: W
first optimized the weight functionf „Ta(v),u… appearing in
the on-line dynamics, not the rateg. Then, as the functionf
contains the unknown variablev, we averaged it over the
distribution of v using the well-known technique of th
Bayes statistics. This optimization procedure also provid
other useful information for the student, namely, the dis
bution of most effective examples. Kinzel and Ruja´n @25#
reported that for the situation in which a simple percept
learns from a simple perceptron~the a5` case!, the Heb-
bian learning with selected examples (u50) leads to faster
convergence of the generalization error than the conventi
Hebbian learning. However, we have found that for fin
values ofa, the most effective examples lie not only on th
boundaryu50 but also onu56a. Furthermore, we could
learn that for small values ofa and at the initial stage o
learning (R small!, the most effective examples lie on th
tails (u56`). As the learning proceeds, the most effecti
examples change the locations tou56a. This information
is useful for effective query constructions adaptively at ea
stage of learning.
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APPENDIX: DERIVATION OF THE WEIGHT FUNCTION
IN THE MODIFIED ADATRON LEARNING

ALGORITHM

In this appendix, we explain how we introduced the mo
fied weight functionQ„2Ta(v)Sa(u)…h(u) l appearing in
the AdaTron learning algorithm in Sec. IV B. From Eqs.~77!
and ~84! in Sec. V, the weight function using the Baye
formula is written as

^ f * &5
12R2

R2
l

]

]u
ln V~yuu!. ~A1!
-

t
-

d
-

n

al

h

-

o
s.
r

-

As this expression contains the unknown parameterR to the
student, we try to find the suitable learning weight functio
which agrees with the asymptotic form of^ f * & in the limit of
R→1 @18#. For this purpose, we investigate the asympto
form of V(yuu) as follows. We consider the cases ofTa
[y51 andy521 separately.

~I! y51. Using the relationR512«,«→0, we find

V~yuu!5HS 2
Ru

A12R2D 2HS a2Ru

A12R2D 1HS a1Ru

A12R2D
.

1

Ap
FerfcS 2u

2A«
D 2erfcS a2u

2A«
D 1erfcS a1u

2A«
D G .

~A2!

The asymptotic form ofV(yuu) depends on the range ofu.
For u.a, the asymptotic form ofV(yuu) is

V;
1

u2a
A«

p
expS 2

~u2a!2

4« D . ~A3!

Therefore, ^ f * &/ l 52(u2a). Similarly, we find ^ f * &/ l
50(0,u,a and u,2a), ^ f * &/ l 52u(2a/2,u,0),
and ^ f * &/ l 52(u1a)(2a,u,2a/2).

~II ! y521. Using the relationR512«, we find for u
.a

V;12
1

u2a
A«

p
expS 2

~u2a!2

4« D . ~A4!

Therefore, the weight function̂f * &/ l is 0 asymptotically.
Similarly, we find ^ f * &/ l 50(a/2,u,a and 2a,u
,0), ^ f * &/ l 52u(0,u,a/2), and ^ f * &/ l 52(a1u)(u
,2a).

From the results of~I! and~II !, we find the modified Ada-
Tron learning algorithm as

Jm115Jm1Q„2Ta~v !Sa~u!…h~u!lx, ~A5!

where

h~u!55
a2u S u.

a

2D
2u S 2

a

2
,u,

a

2D
2a2u S u,2

a

2D .

~A6!
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