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We investigate the generalization ability of a perceptron with nonmonotonic transfer function of a reversed-
wedge type in on-line mode. This network is identical to a parity machine, a multilayer network. We consider
several learning algorithms. By the perceptron algorithm the generalization error is shown to decrease by the
o~ law similarly to the case of a simple perceptron in a restricted range of the paranwtaracterizing the
nonmonotonic transfer function. For other valuesapthe perceptron algorithm leads to the state where the
weight vector of the student is just opposite to that of the teacher. The Hebbian learning algorithm has a similar
property; it works only in a limited range of the parameter. The conventional AdaTron algorithm does not give
a vanishing generalization error for any valuesaofWe thus introduce a modified AdaTron algorithm that
yields a good performance for all valuesafWe also investigate the effects of optimization of the learning
rate as well as of the learning algorithm. Both methods give excellent learning curves proportienal Tthe
latter optimization is related to the Bayes statistics and is shown to yield useful hints to extract maximum
amount of information necessary to accelerate learning proc¢S363-651X98)01007-1

PACS numbds): 87.10+e

[. INTRODUCTION den units(the K= 3 parity maching The output of each unit
is represented as sgn(l), sgn(—a-—u), and sgné—u),

In artificial neural networks, the issue of learning from whereu=/N(J-x)/|J|. HereJ is the N-dimensional synap-
examples has been one of the most attractive probj@ms tic connection vector anddenotes the input signal. Then the
4]. Traditionally emphasis has been put on the off-liee  final output of this machine is given as the product
batch learning. In the off-line learning scenario, the studentsgn(—u)sgn(—a—u)sgn@—u). We regard this final output
sees a set of examplésalled a training s¢trepeatedly until  of the K=3 parity machine as the output of a perceptron
equilibrium is reached. This learning scenario can be anawith non monotonic transfer function. Recently, Engel and
lyzed in the framework of equilibrium statistical mechanics Reimers[17] investigated the generalization ability of this
based on the energy cost function, which means studentsonmonotonic perceptron following the off-line learning sce-
total error for a training set or on other types of cost func-nario. Their results are summarized as follows; Fer&
tions[5—7]. However, recently, several important features of<w«, there exists a poor generalization phase with a large
learning from examples were derived from the paradigm ofgeneralization error. As the number of presented patterns in-
on-line learning. In the on-line learning scenario, the studencreases, a good generalization phase appears after a first or-
sees each example only once and throws it out, and he nevder phase transition at sonee No studies have been made
sees it again. In other words, at each learning stage, the stabout the present system following the on-line learning sce-
dent receives a randomly drawn example and is not able toario. In this paper we study the on-line learning process and
memorize it. The most recent example is used for modifyinghe generalization ability of this nonmonotonic perceptron by
the student weight vector only by a small amount. The onwvarious learning algorithms.
line learning has an advantage over the off-line counterpart This paper is organized as follows. In the next section we
in that it explicitly carries information about the current stageintroduce our model system and derive the dynamical equa-
of achievement of the student as a function of the trainingions with respect to two order parameters for a general
time (which is proportional to the number of examples learning algorithm. One is the overlap between the teacher

Over the past several years, many interesting results havand student weight vectors, and the other is the length of the
been reported in relation to on-line learning. Among them student weight vector. In Sec. Ill, we investigate the dynam-
the generalization ability of multilayer networks is one of theics of on-line learning in the nonmonotonic perceptron for
central problems8—10]. Multilayer neural networks are the conventional perceptron learning and Hebbian leaning
much more powerful machines for information representaalgorithms. We also investigate the asymptotic form of the
tion than the simple perceptron. differential equations in both small and largdimits and get

Recently, the properties of neural networks with a non-the asymptotic behavior of the generalization error. In Sec.
monotonic transfer function have also been investigated b{V we investigate the AdaTron learning algorithm and
several authorfl1-16. A perceptron with a nonmonotonic modify the conventional AdaTron algorithm. In this modifi-
transfer function has the same input-output relations as eation procedure, we improve the weight function of the
multilayer neural network called the parity machine. ThisAdaTron learning so as to adopt it according to the range of
parity machine has one hidden layer composed of three hica. In Sec. V, we optimize the learning rate and the general
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weight function appearing in the on-line dynamics. As thewith B and by squaring both sides of the same equation, we

weight function contains the variables unknown for the stu-obtain the dynamical equations in the limit of langeandN
dent, we average over these variables over distribution fungeepinga=m/N finite as

tion unknown using the Bayes formula. Section VI contains
concluding remarks.

1
— 2
Il. THE MODEL SYSTEM AND DYNAMICAL EQUATIONS da ~ o7 (F(Ta(v), W)+ 2f(Ta(v),u)ul)) (4)

We investigate the generalization ability of the nonmono-,, 4
tonic perceptrons for various learning algorithms. The stu-
dent and teacher perceptron are characterized by their weight
vectors, namelyJe RN and Be RN with |B|=1, respec- drR 1 R
tively. For a binary input signate {—1,+ 1}V, the outputis ~ —= —2< < — =f4(T4(v),u)— (Ru—v)f(Ta(v), W)l > > .
calculated by the nonmonotonic transfer function as follows: da | 2

®)
Ta(v)=sgriv(a—v)(atv)] @
for the teacher and Here ((---)) denotes the average over the randomness of
inputs
Sa(u)=sgriu(a—u)(a+u)] P)
for the student, where we define the local fields of the teacher ()= f f dudv(---)Pgr(u,v) (6)
and student as =\/N(B-x)/|B| and u=N(J-x)/|J|, re-
spectively. The on-line learning dynamics is defined by theyin
following general rule for the change of the student vector
under presentation of thath example: 1 (U+0v2—2Rw)
Pr(uv)=——=exg ———————|. (7)
JMHL= My £(T,(v),U)X. (3) 2myJy1-R 2(1-R?)

Well-known examples are the perceptron learnirigs As we are interested in the typical behavior under our train-

—S,(u) O (—T4(v)Sa(u)), the Hebbian learningf,=T,(v), ing algorithm, we have averaged both sides of Egsand

and the AdaTron learning,= —ul®(—T,(v)S,(u)). (5) over all possible instances of examples. The Gaussian
We rewrite the update rule, EqB), of J as a set of dif- distribution(7) has been derived from the central limit theo-

ferential equations introducing the dynamical order paramrem.

eter describing the overlap between the teacher and student The generalization error, which is the probability of dis-

weight vectorsR™=(B-J™)/|J™| and another order param- agreement between the teacher and the trained student, is

eter describing the norm of the student weight vedtdr represented as,=((0(—T,(v)S,(u)))). After simple cal-

=|J"|/\N. By taking the overlap of both sides of E(B)  culations, we obtain the generalization error as

E(R) ZJ'OOD b 2R +2fxD n| 2Ry +2faD H| —— ZJOCD H -2
=€ = v JR— v v _ v

9 “Ja J1-R? a J1-R? 0 1-R? a J1-R?

2FD b 2R +2FD ] it )
- v v ,
0 J1-R? 0 1-R
|

where we have set H(X)Zf:Dt with Dt I1l. HEBBIAN AND PERCEPTRON LEARNING
=dtexp(—t¥2)/y2. ALGORITHMS

We would like to emphasize that the generalization error A. Hebbian learning

obtained in Eq.(8) is independent of the specific learning o . i
algorithm. In Fig. 1, we ploE(R) = e, for several values of We first investigate the performance of the on-line Heb-

a. This figure tells us that the student can acquire a perfec]tfian learningf =T4(v). We get the differential equations for
generalization ability if he is trained so thatconverges to 1 andR as follows:
for all values ofa. We have confirmed also analytically that

E(R) is a monotonically decreasing function Bf for any ﬂ: 1+ 2_R(1_2A)| / I 9
value ofa. de |2 2
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FIG. 1. Generalization error as a function of the overRafor
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FIG. 2. Trajectories of théR-l flow for a=«. All R-l flows
several values ofi. The student should be trained so that the over-converge to the state &=1 after an infinite number of examples
lap goes to 1.

dR_|_R_2 1-2A)(1—R?)l |2 10
@__EE(_)(_) . (10

To determine whether or n& increases witlw according to
a, we approximate the differential equation fleraroundR

=0 as

dR
da

1
—2A)—.
7z i

Therefore we useR=1—¢ for a>a,=+2In2 andR=¢
—1 for a<a.. Whena>a., we obtain

1 1+2A 1 (12
6 ="— e ——
O 27 1-2A Jq
and
|—\F1 24 13
=V (1-20)a (13
On the other hand, foa<<a. we obtain
1+ 1 1+2A 1 (14
6 = —_— . ———
9 V2m 1-2A /o
and
I= \Fl 2 15
=—\-(1-2d)e. (15

R=—1 for a<a,.

We see that the Hebbian learning algorithms lead to the stafe=1—¢,

andG(R) are found to be

13

are represented.

B. Perceptron learning

We next investigate the on-line perceptron learniing

=—-S,(U)O(—T,(v)S,(u)) by solving the next differential
equations numerically;

ga ~FER)=F(RI/, (16)

dR

@Z[—%E(R)RJF(F(R)R—G(R))H/lz,

17

where F(R)={({0(—Ta(v)S.(u))S.(u)u)) and G(R)

={({O(—Ta(v)Ss(u))Sa(u)v)). Using the distribution(7)
we can rewrite these functions as

FR= 2R 1-2a) (18)
N
and
G(R)=—-F(R),

(19

where A=exp(—a?/2). In Fig. 2 we plot the change d&®
andl| as learning proceeds under various initial conditions for
the case ofa=«. We see that the student can reach the
perfect generalization state=1 for any initial condition.
The R-I flow in the opposite limita=0 is shown in Fig. 3.
Apparently, for this case the student reaches the state with
the weight vector opposite to the teachRe: — 1, after an
infinite number of patterns are presented. From Etjsand

(2), we should notice that the case at=0 is essentially
different from the case of a simple perceptron.

Since the two limiting caseg=«~ anda=0, follow dif-
ferent types of behavior, it is necessary to check what hap-
pens in the intermediate region. For this purpose, we first
investigate the asymptotic behavior of the solution of Egs.
(16) and (17) nearR= =1 for large a. Using the notation

£—0, the asymptotic forms oE(R), F(R),
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1 1+2A] 1 )
=171 24 2ra @7
andl goes to infinity as
I 2 (1-2A) (28
R — - .
e

These two results, Eq&25) and(27), confirm the difference
in the asymptotic behaviors between the two casea=00
anda=.

We have found that the Hebbian and the conventional
perceptron learning algorithms lead to the state—1 for
a<a.=+2In2. This antilearning effect may be understood
as follows. If the student perceptron has learned only one
example by the Hebb rule,

J=Taco(v)X. (29)

converge to the stat®=—1. Therefore, the corresponding gener- Then the output of the student for the same example is
alization error does not converge to the ideal value of zero for this

case.
E(R)zE(HZA), (20
F(R)= ——(1—2A) 21)
- ,
E
G(R)=~ =(1-24). 22)

Substituting these expressions into the differential equations

(16) and(17), we obtain

2/3

(1+2A) w2 23

3\2(1-2A)2

1 /1+2A

_2\/;\1—2A

Therefore, the generalization error is obtained from @)
as

{3@(1—%)2

1/3
1/3
(1+2A) } (24

1/3
a 1B (25)

eg=(1+2A)\/—§

w

(1+2A)
3y2(1-2A)2

The asymptotic form of, Eq. (24), shows thatA should
satisfy 2A<1 ora>a.. The assumption oR=1—¢ with

£—0 thus fails ifa<a.. This fact can be verified from Eq.

(17) expanded aroun®=0 as

dR 2 (1-2A) ! (26)

da 27 12
For a<a,
relationR=¢—1,e—0, instead oR=1—¢ for a<a,. We

R decreases withw. Therefore, we use the

Sa—o(U)=—sgnu)=—sgnJ-x)=—Ta_o(v). (30)

This relation indicates the anti-learning effect for the 0
case. Similar analysis holds for the perceptron learning.

C. Generalized perceptron learning

In this section, we introduce a multiplicative factot? in
front of the perceptron learning function, f
=—|u|"®(—T4(v)S,(u))S,(u), and investigate how the
generalization ability depends on the parametdn particu-
lar, we are interested in whether or not an optimal valug of
exists. The learning dynamics is therefore

Jm+1:Jm_|u|vsa(u)@)(—Ta(v)Sa(U))X- (31)

The case ofy=0 corresponds to the conventional perceptron
learning algorithm. On the other hand, the case/sfl and
a—o corresponds to the conventional AdaTron learning.
Using the above learning dynamics, we obtain the differen-
tial equations with respect toandR as

dl  1[Eg(R)
da_ 12 " IFe(R)], (32
drR 1 R
da 17 ~5Ee(R+[Fe(RIR=Ga(R)]I|, (33
whereEg(R), Fg(R), andG¢g(R) are represented as

Ec(RI=((u?70(~Ta(v)Sa(u))), (34
Fo(RI=((|u]"" 'O (= Ta(v)Sa(u)Sa(w))) (39

and
Go(R) =((u["O(=Ta(v)Sa(u))Sa(u)v)).  (36)

Let us first investigate the behavior of thel flow near
R=0. WhenR is very small, the right-hand side of E(3)

then find the asymptotic form of the generalization error asis found to be ay-dependent constant:
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drR 21207D [y 1
EZT —+§ (1—2A),

Mz

37)

wherel'(x) is the gamma function. As the right hand side of

Eq. (37) is positive for anyy as long as satisfiesa>a., R
increases aroun®=0 only for this range ofa. Thus the

generalized perceptron learning algorithm succeeds in reach-

ing the desired stat®=1, not the opposite on&=—1,

only for a>a., similarly to the conventional perceptron
learning. Therefore, in this section we restrict our analysis to
the case ofa>a, and investigate how the learning curve

changes according to the value pf
Using the notationR=1-¢(¢—0), we obtain the
asymptotic forms oEg, Fg, andGg as follows:

EG: C.e L 1/2+ Coe 1/2, (38)

FG:C381+W2_ Cye, (39)
C

G—— y_+_3181+y/2+C48, (40)

where ¢;=22""Y (y+1)/mw(2y+1),c,=4a%"Al 2,

C3=2""% (y/2+3/2)/m(y+2) andc,=2Aa”\2w. We
first investigate the case df#0 (finite a), namely,c,,c,

#0. The differential equation@2) and(33) are rewritten in
terms ofe and §=1/1 as

GENERALIZATION ABILITY OF A PERCEPTRON WITH ...
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4c4
c1(1-9%)

2c;
=

y+2

£ (12(1-7) _
y+1

g12EB=y)

(46)

and

1/3
a” 1/3

V2

eg=—(1+24)

V2

w

c1(1+y)(1—v?)
6c3(y+2)

=—(1+2M)f(y)a B (47)

We notice thaty should satisfy—1<y<0, because the
prefactor of the leading term of, namely, (Z;/cq)(y
+2)/(y+1), must be positive. As the prefactor of the gen-
eralization error increases monotonically frope= —1 to y
=0, we obtain a smaller generalization error focloser to
-1.

Next we investigate the case af—<«, namely,c,,c,
=0. We first assumé—1, in the limit of a—o. In this
solution,dl/de=0 should be satisfied asymptotically. Then,
from Eq. (41), the two termse?* %2 and £** " should be
equal to each other, namely?*1/?=¢1* 72 which leads to
vy=1. The learning dynamic&1) with a—w and y=1 is
nothing but the AdaTron learning, which has already been
investigated in detail19]. The result for the generalization
error is

ds  &°
a = ?[018 y+l/2+ 0281/2]+ 52[Cg8l+7/2_ C48],
41 3
4 =5 (49
de 6° 2+ vy
— +1/2 127 _ 1+yl2__
da~ 2 LCie” T Coe -9 119 TE-204e|. if we choosel, asly,=1/2, and
(42)
As y=0 corresponds to the perceptron learning, we now 4
assumey#0. Wheny>0, the terms containing; and c3 €=3, (49)

can be neglected in the leading order. Dividing E4l) by
Eq. (42), we obtain

ds o[ —cr8eM2—cye]
de  [c,0eY¥2+2c,e]

(43

If we assumeds¥?>¢ or Se¥?<e, Eq. (43) is solved ass
=exp(—&), which is in contradiction to the assumptio8
<1. Thus, we set

4c,
5=— —gl24 pec

- (44)
2

and determineb and c(>1/2). Substituting Eq{(44) into
(43), we findb=8c,/c,(c,,c,>0) andc=3/2. The nega-
tive value of§= 1/l is not acceptable and we conclude tRat
does not approach 1 whey>0.

Next we investigate the case of<0. Using the same
technique as in the case ¢f>0, we obtain

2/3

ci(1+y)(1—%) e

6c3(y+2)

(49)

if we optimizel, to minimize the generalization error.

We next assumé—« asa—o. It is straightforward to
see thate has the same asymptotic form as in the case of
A+#0 andy<0. Thus we have

2

_vs -1/3
eg=—Ta(n)e (50
wheref,(y) is defined as
/3
7(1+y)(1- )l (y+1)|’
fo(y)= (51

6(25)T2(yl2+1/2)

and y can take any value withir- 1< y<<0.

From the above analysis, we conclude that the student can
get the generalization abilitg ! if and only if a—o and
v=1 (AdaTron). For other cases the generalization error be-
haves asr~ 13, the same functional form as in the case of the
conventional perceptron learning, as long as the student can
obtain a vanishing residual error. Therefore the learning
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curve has universality in the sense that it does not depend on dl |

the detailed value of the parameter

IV. ADATRON LEARNING ALGORITHM

A. AdaTron learning

In this subsection, we investigate the generalization per-

formance of the conventional AdaTron

f=—ul®(—Tu(v)Ss(u)) [18]. The differential equations

for | andR are given as follows:

Exg(R)=2 fw+fo Duu’H atRu +2
= uu
Ad A Ca 1-R2
and
G GU—E(Rm+4Rw%1 R?)| H a(1+R)
Ad Ad /—2 p /—1 — R2

a’R?
X Aexg ———
{ 2(1-R?

At first, we check the behavior & aroundR=0. Evaluating
the differential equatiort53) aroundR=0, we obtain
dR 4 2

da

1

5 (56)

From this result we find that for any value af the flow of
R increases aroun®=0. In Fig. 4, we display the flows in
theR-I plane for several values afby numerical integration

—H

% a2(1+R)?
—Aexp ——
2(1-R?)
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da_  2Em(R), (52
dR R
da_ 2 Ead(R) = Gad(R), (53
learning where Epg(R) ={(u?0(—T4(v)Ss(u)))) and Gaqe(R)

=((uvO®(—T4(v)S,(u)))). After simple calculations, we
obtain

fa+fa)Duu2 H( RU_ )| 2Ry (54)
0 Jo= V1-R? 1-R?
aRrR _H(Ml—R) 1] 2(1-R})*?
J1-R? J1I-RZ| 2 w
pey EA-R2 ,{_1 5
"N 2a-r) | T T 2a-Ry)) " 2)

of Eq. (53). This figure indicates that the overl&increases
monotonically, butR does not reach the staR=1 if a is
finite. This means that the differential equati¢s3) with
respect toR has a nontrivial fixed poinR=Ry(<1) if a
<o, which is the solution of the nonlinear equation
REAJ(R) =2G,4(R). Therefore, we conclude that far=
anda=0, we obtain the generalization errorgs- a” 1 but

the generalization error converges to a finite value exponen-
tially for finite a. In Fig. 5, we plot the corresponding gen-

FIG. 5. Learning curves corresponding to Fig. 4. For the two

FIG. 4. Trajectories for the conventional AdaTron learning. Ex- cases ofa=«~ and a=0 (overlapping, the generalization errors

cept for the case ci=< anda=0 (overlapping, the trajectories
converge to the state=0.

converge to zero as™ *. However, for the other cases, generaliza-
tion errors converge to the finite value exponentially.
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eralization error. V. OPTIMIZED LEARNING

A. Optimization of the learning rate

B. Modified AdaTron learning In the present subsection, we improve the conventional

In the previous subsection, we found that the on-line Adaperceptron learning by introducing a time-dependent learn-
Tron learning fails to obtain the zero residual error for finiteing rate[20,19. We consider the next on-line dynamics:
a. In this subsection, we modify the AdaTron learningfas

= 0(=TA(0)S,(u))h(u)! with IME= JM—g(a)O (~ To(v)Sa(u)Sa(w)x. (63
( a Using the same technique as in the previous section, we
a-u U>§ can derive the differential equations with respect endR
as follows:

3 B . a a
h(u) =1« u §<u<5 (57 dl 11 er . o
a da_T129(@)ER)—g(a)F(RI, (64)

\ —a—u (U< — E

dR

and see if the generalization ability of our nonmonotonic da
system is improved. The motivation for the above choice
comes from the optimization of the learning algorithm to be =L(g(a)). (65
mentioned in the next section. Details of derivation of Eq.
(57) are found in the Appendix. Then the differential equa-
tion with respect tdR is obtained as follows:

1] R ,
:l—z[—gE(R)g(a) +g(a)(F(R)R—G(R))I}

The optimal learning ratg,,(«) is determined so as to
maximizeL (g(«)) to accelerate the increase Rf We then

find

dR R?

- _ F(RIR—G(R)]I

da= " 2 Ema(R)—RFya(R)+Gya(R), (58 gopt:[ ( )RE(R)( )] 66
where  Epa(R)=((h*(U)®(=T,(v)Sa(u)))), Fma(R)  Substituting this expression into the above differential equa-
=((uh(u) O (= T4(v)Sa(u)))) tions, we obtain
and ﬂ__[F(R)R—G(R)][F(R)R+G(R)]| 67

dR 2R’E(R) ’

Gua(R)={(vh(u)®(=T4(v)Sa(u)))).
dR [F(RIR—G(R)]?
To see the asymptotic behavior of the generalization er- —=[ (R) (R)] ) (68)
ror, we evaluate the leading-order contribution Rsap- dl 2RE(R)
proaches 1, R=1—¢, as

We can obtain the asymptotic form ef=1—-R), |, and
€, With the same technique of analysis as in the previous
E MZ‘/E 1+2A)632 59 section;
A~ ——(1+28)e*, (59
2\2(1+28)|°
2,2 T (122 ' 9
Fua~ = ——(1+2(1-a)A)e¥, (60) (1-24)
| p[ 16 1+24 )4 —4] (70)
2 =exg —16] ——— | a 7|,
42’ 61 (1-2A)2

MA = e

and

Substituting these expressions into the differential equation

(58), we obtaine 2= \27r/(1+2A) "~ and the generaliza- . =\/—§(1+2A) 22(1+24) " 71
tion error as 9 (1-2A)2 :
\/§(1+2A) v 2 Therefore, the generalization ability has been improved from
T, f 4 (62)  « ¥ for g=1 to @ . The optimal learning ratep(a)

behaves asymptotically as

We should notice that the above result is independera of I 4
and the generalization ability of the student is improved by Jo t:ﬁa—lex _ ﬂ) a *. (72
this modification for all finitea. " (1-24) (1-2A)2
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The factorF(R)R—G(R) of g, appearing in Eq(66) is
calculated by substituting(R) andG(R) in Egs.(18) and
(19) asF(R)R—G(R)=(1—R?)(1-2A)/\27. Thus, ata
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Let us now calculatéz). For this purpose, we use the
distribution P(z|y,u). This quantity means the posterior
probability of z wheny andu are given, where we have set

=a.=2In2, the optimal learning rate vanishes. Thereforey=T,(v). This conditional probability is rewritten by the

our formulation does not work a&=a..
As the optimal learning ratg,, changes the sign a

=a., from the arguments in Sec. lll, we can see why the

optimal learning rate can eliminate the antilearning.
In relation to this phenomenon a@=+/2In2, Van den

Bayes formula

P(z)P(y|u,z)

Broeck [21,22 recently investigated the same reversed- )
wedge perceptron, which learns in the unsupervised mod&om which we can calculat¢z) as

from the distribution:

exp(—v2/2)
T[@(v—a)+®(v+a)®(—v)]

(73

P(v)=2

with v=N(B-x)/|B|. For small a, he found R(«)
~Ja(v)? for the optimal on-line learning, whefe - - ) de-
notes the average over the distributi@3). Then he showed
that ata=+/2In2, the distribution(73) leads to{v)=0 and
consequentlyR(a)=0. From this result, he concluded that
as long agv)=0 holds, any kind of on-line learning neces-

sarily fails and the corresponding learning curve has a pla-
teau. It seems that a similar mechanism may lead to a failure

of the optimal learning aa=+/2In2 in our model.

B. Optimization of the weight function using the Bayes formula

P(zly,u)= , (79
fdz A2)P(yl|u,z)
fdz zZR2z)P(y|u,2)
()= | dzzRzly.0)-
J dz P(z)P(y|u,z)
f zDz RYy|u,z)
= (80)
f Dz P(y|u,2)

Here P(y|u,z) is given as

P(y|lu,2)=y0®(z\1-R?+Ru)—yO(z\/1-R*+Ru—-a)

+y0®(—zJ1-R?>-Ru—a)+ %(1—y) (81)

In this subsection we try another optimization procedureffom the distributiony=T,(v). Then, the denominator of

by Kinouchi and Catichf23]. We choose the optimal weight
function f(T,(v),u) by differentiating the right-hand side of
Eq. (5) with the aim to accelerate the increaseRof

f* Iﬁ(v—Ru). (74)

It is important to remember thdt contains some unknown
information for the student, namely, the local field of the
teacherv. Therefore, we should averadé& over a suitable
distribution to erase from f*. For this purpose, we trans-
form the variabless andv to u andz:

v=z\/l—Rz+ Ru.

Then, the connected Gaussian distributiy{u,v) is rewrit-
ten as

(75

PR(u,v)—mex —? ex —5 . (76)
We then obtain
J1-R?
(*)=~5—N2) 77

where(- - -) stands for the averaging over the variable
Substituting this into the differential equati@®), we find

dR

ia=

(1-R?)
2R

{((2%))- (78)

Eq. (79) is calculated as

f Dz P(y|u,z)=yf Dz0®(zy1-R?+Ru)
—yf Dz®(zV1-R?+Ru—a)
+yf DzO(-zJ1-R*-~Ru-a)

1
+§(1—y)

=Q(ylu), (82
whereQ(y|u) means the posterior probability gfwhen the
local field of the studentl is given. As we treat the binary
output teacher, we obtain from E2)

Q(+1) —H(— Ru )_H( a—Ru)+H( a+Ru)
(£1ju)= +m + m x m .
(83

In Figs. 6 R=0.5) and 7, R=0.9), we plotQ(+ 1|u) for
the cases 08=4.0, 2.0, 1.0 ané=0.5. From these figures,
we find that for anyaQ(+1|u) seems to reacfiT,(u)
+1]/2 asR goes to+1. Using the same technique, we can

calculatef Dz zR(y|u,z) and obtain
2

R

f Dz zRy|u,2)= Zaul. @9
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FIG. 6. Shapes 0of)(+1|u) for R=0.5.

FIG. 7. Shapes of)(+1|u) for R=0.8. We see that for any
Q(+1|u) seems to reachiT,(u)+1]/2 asR goes to+1.
Substituting this into the right-hand side ®R/d«, Eq.(78),
we obtain

where((- - -)) stands for the averaging over the distribution
P(y,u)=J Dz P(y|u,z) P(u)P(2). Performing this average,

dR (1-R)2( 4 2 we finally obtain

E:<<_—2R3 |%|nﬂ(y|u)]

dR (1-R?) (=
(1_R2)3/22
+

RZ

da

J
2o Qylu) ) ),

“r | DuE.Ruw), (86)
@5 where
|
A2 A3 A2\ ]2 1 1
=a(Ra)= exp<_7)_exp<_7)_exp(_7” [H(—M—H(AZHH(A@+ H(AD+H(A)—H(A| &7
[
and A;=RU\1-R?, A,=(a—Ru)/J1-R?, As;=(a

In order to investigate the performance of the Bayes op-
cases ofa=« in Fig. 8 anda=1.0 in Fig. 9. From these
figures, we see that for both casesasf anda<x, the
generalization error calculated by the Bayes formula con-

+Ru)/‘/1—R2. We plot the generalization error by numeri- timization, we have calculated the asymptotic form of the
cally solving Egs.(16), (17), (67), (68), and (86) for the

verges more quickly to zero than by the optimal learning rate

gopt(a)-

generalization error from Ed86) and the result is

2
1/2__
& T(1+2A)Ca (88)
or e=1—R, where
Recently, Simmonetti and Catich24] introduced the on- 1 (o 2
line learning algorithm for the nonoverlapping parity ma- C= _f dtexp(—t ). (89)
chine with general number of nod&s In their method, the 7] " H(t)
weight vector of the student in each hidden unit is trained by
the method in Ref[23]. In order to average over the internal The generalization error is then given by ER0) as
fields of the teacher in the differential equation with respect
to the specific hidden unik of the student, they need the
conditional probability that depends not only on the internal

227

Eg:

field of the unitk but also on the internal field of the other
units (i #k). This fact shows that their optimal algorithm is

1 1

—~0.883-.

*® o o
f dtexp( —t?)/H(t)

(90

nonlocal. In our problem, the input-output relation of the This asymptotic form of the generalization error agrees with
machine can be mapped to those of a single layer reversethe result of Kinouchi and Catich23]. We notice that this
wedge perceptron. Therefore, it is not necessary for us to uferm is independent of the width of the reversed wedge
leads to a local algorithm.

the information about all units and our optimizing procedure We next mention the physical meaning 8f,(R,u) ap-

pearing in the differential equatiof86). As the rate of in-

857
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FIG. 8. Learning curves of perceptron, optimized perceptron, FIG. 9. Learning curves of perceptron, optimized perceptron,
and Baysian optimization algorithms far=oc. The Baysian opti- and Baysian optimization algorithms far=1.0. The Baysian opti-
mization algorithm is the best among the three. mization algorithm gives the best result among the three.

creasedR/da is proportional to= ,(R,u), this quantity is to obtain the zero residual error for all finite valuesaofFor
regarded as the distribution of the gain, which determines théhe unlearnable situatiofwhere the structures of the teacher
increase oR. Therefore E 4(R,u) yields important informa- and student are differentinoue and Nishimori reported that
tion about the strategy to make queries. A query means tthe AdaTron learning converges to the largest residual error
restrict the input signal to the student, to some subspace. among the three algorithm{d9]. It is interesting that the
Kinzel and Ruja suggested that if the student learns by theAdaTron learning algorithm is not useful even for the learn-
Hebbian learning algorithm from restricted inputs, namely,gple situation.

inputs lying on the subspaaee=0, the prefactor of the gen-  |n order to overcome this difficulty, we introduced several
eralization error becomes hd25]. In the present formula- modified versions of the conventional learning rules. We first

gggré?)?étgugglltam%kriggoggninb?hiencir?trggrrgrg%d _E_’Kei”lzgm?r?introduced the time-dependent learning rate into the on-line
process is clearly accelerated by choosing the peak positi grce_ptron learning and optlmlzg It As a lresulti the gener-
alization error converges to zero in proportionato~ except

of E,(R,u) as the location of these delta functions. In Fig. i ) '
a(R.U) ¢ at a=+2In2 where the learning rate becomes identically

10 we plot the d|str|but|oﬁEa(R,u) for a=2.0 (top) anda zero. We next improved the conventional AdaTron learning
=0.8 (bottom). From these figures, we learn that for large

a(=2.0), the most effective example lies on the decision

boundary (1=0) at the initial training stagésmallR). How- > // "/
ever, as the student learns, two different peaks appear sym- /

metrically and in the final stage of training, the digteibutio% ////////////////////////////////
has three peaks around=0 andu= *a. On the other hand, , ////// /

for small a(=0.8), the most effective examples lie at the «///////"

tails (u==*») for the initial stage. In the final stage, the
distribution has two peaks aroung=*+a. Therefore it is
desirable to change the location of queries adaptively.

VI. CONCLUSION

We have investigated the generalization abilities of a non-
monotonic perceptron, which may also be regarded as a
multilayer neural network, a parity machine, in the on-line
mode. We first showed that the conventional perceptron and
Hebbian learning algorithms lead to the perfect learrihg
=1 only whena>a_.=2In2. The same algorithms yield
the opposite statR=—1 in the other cas@<a.. These
algorithms have originally been designed having the simple
perceptron §=<°) in mind, and thus are natural to give the  FIG. 10. Distributions of the gaif ,(R,u) for a=2.0 (top) and
opposite result for the reversed-output systean-0Q). In a=0.8 (bottom. The peak positions give the best place to make
contrast, the conventional AdaTron learning algorithm failedqueries.
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by modifying the weight function so that it changes accord-As this expression contains the unknown paramités the

ing to the value of the internal potentialof the student. By student, we try to find the suitable learning weight function,

this modification, the generalization ability of the studentwhich agrees with the asymptotic form d* ) in the limit of

dramatically improved and the generalization error con-R—1 [18]. For this purpose, we investigate the asymptotic

verges to zero with aa-independent form, 2 1. form of Q(y|u) as follows. We consider the cases Bf
We also investigated a different type of optimization: We=y=1 andy= —1 separately.

first optimized the weight functiofi(T,(v),u) appearing in (I) y=1. Using the relatiolR=1—-¢,e—0, we find

the on-line dynamics, not the rate Then, as the functiof

contains the unknown variable, we averaged it over the Qy[u)=H Ru ( a—Ru a+Ru
distribution of v using the well-known technique of the I N =Y B N =Y h_p?
Bayes statistics. This optimization procedure also provided 1-R 1-R 1-R
other useful information for the student, namely, the distri- 1 —u a—u a+u
bution of most effective examples. Kinzel and Ruj@5] =— erfc( —) —erfc( —) +erfc<—
reported that for the situation in which a simple perceptron m 2\e 2\ 2\
learns from a simple perceptrdthe a=« caseg, the Heb- (A2)

bian learning with selected examplaes=0) leads to faster

convergence of the generalization error than the conventiondihe asymptotic form of)(y|u) depends on the range af
Hebbian learning. However, we have found that for finiteFor u>a, the asymptotic form of)(y|u) is

values ofa, the most effective examples lie not only on the

boundaryu=0 but also onu= *+a. Furthermore, we could 0~ Lﬁexp{ _ (u—a)® (A3)
learn that for small values o and at the initial stage of u—a vV de )’
learning R small, the most effective examples lie on the o .
tails (u= *). As the learning proceeds, the most effective Therefore, (f*)/I=—(u—a). Similarly, we find (f*)/I
examples change the locationsue +a. This information =0(0<u<a and u<-a), (f*)/I=-u(-a/2<u<0),
is useful for effective query constructions adaptively at eactand(f*)/I=—(u+a)(-a<u<-al2).
stage of learning. (I) y=—1. Using the relatiorR=1—¢, we find for u
>a
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Science. From the results ofl) and(ll), we find the modified Ada-
Tron learning algorithm as

APPENDIX: DERIVATION OF THE WEIGHT FUNCTION

IN THE MODIFIED ADATRON LEARNING JMI=0"4 0 (= Ta(v) Sa(u)h(u)lx, (A5)
ALGORITHM
where
In this appendix, we explain how we introduced the modi-
fied weight function® (—T,(v)S,(u))h(u)l appearing in ( a—u us2
the AdaTron learning algorithm in Sec. IV B. From E&7) 2
and (84) in Sec. V, the weight function using the Bayes a a
formula is written as h(uy=¢{ —u — §<u<§> (A6)
= o (A1) au 2
R2 au y . \ u — E .
[1] S. Amari, IEEE Trans. Electromagn. Compa6, 299 (1967). edited by E. Domany, J. L. van Hemmen, and K. Schulten
[2] 3. A. Hertz, A. Krogh, and R. G. Palmentroduction to the (Springer, Berlin, 1996
Theory of Neural ComputatiofiAddison-Wesley, Redwood [5] M. Griniasti and H. Gutfreund, J. Phys. 24, 715(1991).
City, 199)). [6] R. Meir and J. F. Fontanari, Phys. Rev.4A, 8874(1992.
[3] T. H. L. Watkin, A. Rau, and M. Biehl, Rev. Mod. Phy&5, [7] O. Kinouchi and N. Caticha, Phys. Rev.3, R54(1996.
499 (1993. [8] Y. Kabashima, J. Phys. &7, 1917(1994).

[4] M. Opper and W. Kinzel, irPhysics of Neural Networks |lI [9] H. Sompolinsky, N. Barkai, and H. S. Seungeural Net-



860

works: The Statistical Mechanics Perspectiedited by J. H.
Oh, C. Kwon, and S. ChONorld Scientific, Singapore, 1995

[10] D. Saad and S. A. Solla, Phys. Rev5E 4225(1995.

[11] M. Morita, S. Yoshizawa, and K. Nakano, Trans. Inst. Elec-
tron. Inf. Commun. Eng. C-073-D-ll, 242 (1993 (in Japa-
nese.

[12] H. Nishimori and I. Opris, Neural Networkg 1061(1993.

[13] J. Inoue, J. Phys. R9, 4815(1996.

[14] M. Morita, Neural Networks, 1477(1996.

[15] G. Boffetta, R. Monasson, and R. Zecchina, J. Phys26A
L507 (1993.

[16] R. Monasson and D. O’Kane, Europhys. L&, 85 (1994.

[17] A. Engel and L. Reimers, Europhys. Le?8, 531(1994.

INOUE, NISHIMORI, AND KABASHIMA

PRE 58

[18] M. Biehl and P. Riegler, Europhys. Lef8, 525 (1994).

[19] J. Inoue and H. Nishimori, Phys. Rev.35, 4544(1997).

[20] J. Inoue, H. Nishimori, and Y. Kabashima, J. Phys3@\ 3795
(1997.

[21] C. Van den BroeckProc. of Theoretical Aspects of Neural
Computation 97 (TANC-97)(Springer-Verlag, Berlin, in
press.

[22] C. Van den Broeck and P. Reimann, Phys. Rev. (72188
(1996.

[23] O. Kinouchi and N. Caticha, J. Phys. 26, 6243(1992.

[24] R. Simonetti and N. Caticha, J. Phys.28, 4859(1996.

[25] W. Kinzel and P. Ruja, Europhys. Lett13, 473(1990.



